The [OpenRefine Python Client from PaulMakepeace](https://github.com/PaulMakepeace/refine-client-py) provides a library for communicating with an [OpenRefine](http://openrefine.org) server.
This fork extends the command line interface (CLI) and is distributed as a convenient one-file-executable (Windows, Linux, macOS).
It is also available via Docker Hub, PyPI and Binder.
For [Docker](#docker) containers, native [Python](#python) installation and free [Binder](#binder) on-demand server see the corresponding chapters below.
Using tab completion and command history is highly recommended:
- autocomplete filenames: enter a few characters and press `↹`
- recall previous command: press `↑`
### Basic commands
Execute the client by entering its filename followed by the desired command.
The following example will download two small files ([duplicates.csv](https://raw.githubusercontent.com/opencultureconsulting/openrefine-client/master/tests/data/duplicates.csv) and [duplicates-deletion.json](https://raw.githubusercontent.com/opencultureconsulting/openrefine-client/master/tests/data/duplicates-deletion.json)) into the current directory and will create a new OpenRefine project from file duplicates.csv.
Download example data (`--download`) and create project from file (`--create`):
- export project to terminal: `--export "duplicates"`
- apply [rules from json file](http://kb.refinepro.com/2012/06/google-refine-json-and-my-notepad-or.html): `--apply duplicates-deletion.json "duplicates"`
- export project to file: `--export --output=deduped.xls "duplicates"`
- delete project: `--delete "duplicates"`
### Getting help
Check `--help` for further options.
Please file an [issue](https://github.com/opencultureconsulting/openrefine-client/issues) if you miss some features in the command line interface or if you have tracked a bug.
And you are welcome to ask any questions!
### Change URL
By default the client connects to the usual URL of OpenRefine [http://localhost:3333](http://localhost:3333).
If your OpenRefine server is running somewhere else then you may set hostname and port with additional command line options (e.g. http://example.com):
- set host: `-H example.com`
- set port: `-P 80`
### Advanced Templating
The OpenRefine [Templating](https://github.com/OpenRefine/OpenRefine/wiki/Export-As-YAML) supports exporting data in any text format (i.e. to construct JSON or XML).
The graphical user interface offers four input fields:
1. prefix
2. row template
- supports [GREL](https://github.com/OpenRefine/OpenRefine/wiki/General-Refine-Expression-Language) inside two curly brackets, e.g. `{{jsonize(cells["name"].value)}}`
3. row separator
4. suffix
This templating functionality is available via the openrefine-client command line interface.
It even provides an additional feature for splitting results into multiple files.
To try out the functionality create another project from the example file above.
Because our project "advanced" contains duplicates in the first column "email" this command will overwrite files (e.g. `advanced_melanie.white@example2.edu.json`).
When using this option, the first column should contain unique identifiers.
### See also
- Linux Bash script to run OpenRefine in batch mode (import, transform, export): [openrefine-batch](https://github.com/opencultureconsulting/openrefine-batch)
- [Jupyter notebook demonstrating usage in Linux Bash](https://nbviewer.jupyter.org/github/felixlohmeier/openrefineder/blob/master/openrefine-client-bash.ipynb)
- Use case [HOS-MetadataTransformations](https://github.com/subhh/HOS-MetadataTransformations): Automated workflow for harvesting, transforming and indexing of metadata using metha, OpenRefine and Solr. Part of the Hamburg Open Science "Schaufenster" software stack.
- Use case [Data processing of ILS data to facilitate a new discovery layer for the German Literature Archive (DLA)](https://doi.org/10.5281/zenodo.2678113): Custom data processing pipeline based on Pandas (a Python library) and OpenRefine.
Run openrefine-client linked to a dockerized OpenRefine ([felixlohmeier/openrefine](https://hub.docker.com/r/felixlohmeier/openrefine/) [![Docker](https://img.shields.io/microbadger/image-size/felixlohmeier/openrefine?label=docker)](https://hub.docker.com/r/felixlohmeier/openrefine)):
docker run -d -p 3333:3333 --network=openrefine --name=openrefine-server felixlohmeier/openrefine:3.2
```
3. Run client with some [basic commands](#basic-commands): 1. download example files, 2. create project from file, 3. list projects, 4. show metadata, 5. export to terminal, 6. apply transformation rules (deduplication), 7. export again to terminal, 8. export to xls file and 9. delete project
- If you want to add an OpenRefine startup option you need to repeat the default commands (cf. [Dockerfile](https://hub.docker.com/r/felixlohmeier/openrefine/dockerfile))
-`-i 0.0.0.0` sets OpenRefine to be accessible from outside the container, i.e. from host
-`-d /data` sets OpenRefine workspace
- Example for [allocating more memory](https://github.com/OpenRefine/OpenRefine/wiki/FAQ#out-of-memory-errors---feels-slow---could-not-reserve-enough-space-for-object-heap) to OpenRefine with additional option `-m 4G`
- If you want OpenRefine to read and write persistent data in host directory (i.e. store projects) you can mount the container path `/data`. Example for host directory `/home/felix/refine`:
- [GitHub Repository](https://github.com/opencultureconsulting/openrefine-docker) for docker container `felixlohmeier/openrefine`
- Linux Bash script to run OpenRefine in batch mode (import, transform, export) with docker containers: [openrefine-batch-docker.sh](https://github.com/opencultureconsulting/openrefine-batch/#docker)
- Jupyter notebook by Tony Hirst (2019-01-09) [Notebook demonstrating how to control OpenRefine via a Python client.](https://nbviewer.jupyter.org/github/ouseful-PR/openrefineder/blob/4cef25a4ca6077536c5f49cafb531499fbcad96e/notebooks/OpenRefine%20Demos.ipynb)
- [OpenRefine API](https://github.com/OpenRefine/OpenRefine/wiki/OpenRefine-API) in official OpenRefine wiki
- free to use on-demand server with Jupyter notebook, OpenRefine and Bash
- no registration needed, will start within a few minutes
- [restricted](https://mybinder.readthedocs.io/en/latest/faq.html#how-much-memory-am-i-given-when-using-binder) to 2 GB RAM and server will be deleted after 10 minutes of inactivity
- [bash_kernel demo notebook](https://nbviewer.jupyter.org/github/felixlohmeier/openrefineder/blob/master/openrefine-client-bash.ipynb) for using the openrefine-client in a Linux Bash environment [![Binder](https://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/felixlohmeier/openrefineder/master?urlpath=/tree/openrefine-client-bash.ipynb)
- Run PyInstaller in Python 3 environments on native Windows, macOS and Linux. Should be "the oldest version of the OS you need to support"! Current release is built with:
- openrefine-batch: [openrefine-batch.sh](https://github.com/opencultureconsulting/openrefine-batch/blob/master/openrefine-batch.sh#L7) and [openrefine-batch-docker.sh](https://github.com/opencultureconsulting/openrefine-batch/blob/master/openrefine-batch-docker.sh)
- openrefineder: [postBuild](https://github.com/felixlohmeier/openrefineder/blob/master/postBuild) and [openrefine-client-bash.ipynb](https://github.com/felixlohmeier/openrefineder/blob/master/openrefine-client-python.ipynb)