openrefine-client/docker
Felix Lohmeier a0123e9511 refactor to allow module execution 2019-08-01 17:23:40 +02:00
..
Dockerfile refactor to allow module execution 2019-08-01 17:23:40 +02:00
README.md removed urllib2 dependencies 2017-03-14 22:16:36 +01:00

README.md

batch processing with python-client

There are some client libraries for OpenRefine that communicate with the OpenRefine API. I have prepared a docker container on top of the Python Library from PaulMakepeace and extended the CLI with some options to create new OpenRefine projects from files.

If you are looking for a ready to use command line interface to OpenRefine for batch processing then you might be interested in the following bash shell script: felixlohmeier/openrefine-batch

basic usage

1) start server:

docker run -d --name=openrefine-server felixlohmeier/openrefine

2) run client with one of the following commands:

list projects:

docker run --rm --link openrefine-server felixlohmeier/openrefine-client --list

create project from file:

docker run --rm --link openrefine-server felixlohmeier/openrefine-client --create [FILE]

apply rules from json file:

docker run --rm --link openrefine-server felixlohmeier/openrefine-client --apply [FILE.json] [PROJECTID]

export project to file:

docker run --rm --link openrefine-server felixlohmeier/openrefine-client --export [PROJECTID] --output=FILE.tsv

check help screen for more options:

docker run --rm --link openrefine-server felixlohmeier/openrefine-client --help

3) cleanup:

docker stop openrefine-server && docker rm openrefine-server

example for customized run commands in interactive mode (e.g. for usage in terminals)

1) start server in terminal A:

docker run --rm --name=openrefine-server -p 80:3333 -v /home/felix/refine:/data:z felixlohmeier/openrefine -i 0.0.0.0 -m 4G -d /data

  • automatically remove docker container when it exits
  • set name "openrefine" for docker container
  • publish internal port 3333 to host port 80
  • mount host directory /home/felix/refine as working directory
  • make openrefine available in the network
  • increase java heap size to 4 GB
  • set refine workspace to /data
  • OpenRefine should be available at http://localhost

2) start client in terminal B (prints help screen):

docker run --rm --link openrefine-server -v /home/felix/refine:/data:z felixlohmeier/openrefine-client

  • automatically remove docker container when it exits
  • build up network connection with docker container "openrefine"
  • mount host directory /home/felix/refine as working directory
  • apply history in file /home/felix/refine/history.json to project with id 1234567890123

example for customized run commands in detached mode (e.g. for usage in shell scripts)

1) define variables (bring your own example data)

workingdir=/home/felix/refine inputfile=example.csv jsonfile=test.json

2) start server

docker run -d --name=openrefine-server -v ${workingdir}:/data:z felixlohmeier/openrefine -i 0.0.0.0 -m 4G -d /data

3) wait until server is ready

until docker run --rm --link openrefine-server --entrypoint /usr/bin/curl felixlohmeier/openrefine-client --silent -N http://openrefine-server:3333 | cat | grep -q -o "OpenRefine" ; do sleep 1; done

4) create project (import file)

docker run --rm --link openrefine-server -v ${workingdir}:/data:z felixlohmeier/openrefine-client --create $inputfile

5) get project id

project=($(docker run --rm --link openrefine-server -v ${workingdir}:/data felixlohmeier/openrefine-client --list | cut -c 2-14))

6) apply transformations from json file

docker run --rm --link openrefine-server -v ${workingdir}:/data felixlohmeier/openrefine-client --apply ${jsonfile} ${project}

7) export project to file

docker run --rm --link openrefine-server -v ${workingdir}:/data felixlohmeier/openrefine-client --export --output=${project}.tsv ${project}

8) cleanup

docker stop -t=500 openrefine-server && docker rm openrefine-server