#!/usr/bin/env python """ Client library to communicate with a Refine server. """ # Copyright (c) 2011 Paul Makepeace, Real Programmers. All rights reserved. import csv import json import gzip import os import re import StringIO import urllib import urllib2_file import urllib2 import urlparse from google.refine import facet from google.refine import history REFINE_HOST = os.environ.get('GOOGLE_REFINE_HOST', '127.0.0.1') REFINE_PORT = os.environ.get('GOOGLE_REFINE_PORT', '3333') class RefineServer(object): """Communicate with a Refine server.""" def __init__(self, server='http://%s:%s' % (REFINE_HOST, REFINE_PORT)): self.server = server[:-1] if server.endswith('/') else server def urlopen(self, command, data=None, project_id=None): """Open a Refine URL and optionally POST data.""" url = self.server + '/command/core/' + command if data is None: data = {} if project_id: # XXX haven't figured out pattern on qs v body if 'delete' in command: data['project'] = project_id else: url += '?project=' + project_id req = urllib2.Request(url) if data: req.add_data(data) # data = urllib.urlencode(data) #req.add_header('Accept-Encoding', 'gzip') try: response = urllib2.urlopen(req) except urllib2.URLError as (url_error,): if 'Connection refused' in url_error: raise urllib2.URLError( '%s for %s. No Refine server reachable/running; ENV set?' % (url_error, self.server)) else: raise if response.info().get('Content-Encoding', None) == 'gzip': # Need a seekable filestream for gzip gzip_fp = gzip.GzipFile(fileobj=StringIO.StringIO(response.read())) # XXX Monkey patch response's filehandle. Better way? urllib.addbase.__init__(response, gzip_fp) return response def urlopen_json(self, *args, **kwargs): """Open a Refine URL, optionally POST data, and return parsed JSON.""" response = json.loads(self.urlopen(*args, **kwargs).read()) if 'code' in response and response['code'] != 'ok': raise Exception( response['code'] + ': ' + response.get('message', response.get('stack', response))) return response class Refine: """Class representing a connection to a Refine server.""" def __init__(self, server, **kwargs): if isinstance(server, RefineServer): self.server = server else: self.server = RefineServer(server) def get_version(self): """Return version data. {"revision":"r1836","full_version":"2.0 [r1836]", "full_name":"Google Refine 2.0 [r1836]","version":"2.0"}""" return self.server.urlopen_json('get-version') def list_projects(self): """Return a dict of projects indexed by id. {u'1877818633188': { 'id': u'1877818633188', u'name': u'akg', u'modified': u'2011-04-07T12:30:07Z', u'created': u'2011-04-07T12:30:07Z' }, """ # It's tempting to add in an index by name but there can be # projects with the same name. return self.server.urlopen_json('get-all-project-metadata')['projects'] def get_project_name(self, project_id): """Returns project name given project_id.""" projects = self.list_projects() return projects[project_id]['name'] def open_project(self, project_id): """Open a Refine project.""" return RefineProject(self.server, project_id) def new_project(self, project_file=None, project_url=None, project_name=None, split_into_columns=True, separator='', ignore_initial_non_blank_lines=0, header_lines=1, # use 0 if your data has no header skip_initial_data_rows=0, limit=None, # no more than this number of rows guess_value_type=True, # numbers, dates, etc. ignore_quotes=False): if ((project_file and project_url) or (not project_file and not project_url)): raise ValueError('One (only) of project_file and project_url must be set') def s(opt): if isinstance(opt, bool): return 'on' if opt else '' if opt is None: return '' return str(opt) options = { 'split-into-columns': s(split_into_columns), 'separator': s(separator), 'ignore': s(ignore_initial_non_blank_lines), 'header-lines': s(header_lines), 'skip': s(skip_initial_data_rows), 'limit': s(limit), 'guess-value-type': s(guess_value_type), 'ignore-quotes': s(ignore_quotes), } if project_url is not None: options['url'] = project_url elif project_file is not None: options['project-file'] = { 'fd': open(project_file), 'filename': project_file, } if project_name is None: # make a name for itself by stripping extension and directories project_name = (project_file or 'New project').rsplit('.', 1)[0] project_name = os.path.basename(project_name) options['project-name'] = project_name response = self.server.urlopen('create-project-from-upload', options) # expecting a redirect to the new project containing the id in the url url_params = urlparse.parse_qs( urlparse.urlparse(response.geturl()).query) if 'project' in url_params: project_id = url_params['project'][0] return RefineProject(self.server, project_id) else: raise Exception('Project not created') def RowsResponseFactory(column_index): """Factory for the parsing the output from get_rows(). Uses the project's model's row cell index so that a row can be used as a dict by column name.""" class RowsResponse(object): class RefineRows(object): class RefineRow(object): def __init__(self, row_response): self.flagged = row_response['flagged'] self.starred = row_response['starred'] self.index = row_response['i'] self.row = [c['v'] if c else None for c in row_response['cells']] def __getitem__(self, column): # Trailing nulls seem to be stripped from row data try: return self.row[column_index[column]] except IndexError: return None def __init__(self, rows_response): self.rows_response = rows_response def __iter__(self): for row_response in self.rows_response: yield self.RefineRow(row_response) def __getitem__(self, index): return self.RefineRow(self.rows_response[index]) def __len__(self): return len(self.rows_response) def __init__(self, response): self.mode = response['mode'] self.filtered = response['filtered'] self.start = response['start'] self.limit = response['limit'] self.total = response['total'] # 'pool': {"reconCandidates": {},"recons": {}} self.pool = response['pool'] self.rows = self.RefineRows(response['rows']) return RowsResponse class RefineProject: """A Google Refine project.""" def __init__(self, server, project_id=None): if not isinstance(server, RefineServer): if '/project?project=' in server: server, project_id = server.split('/project?project=') server = RefineServer(server) self.server = server if not project_id: raise Exception('Missing Refine project ID') self.project_id = project_id self.engine = facet.Engine() self.sorting = facet.Sorting() self.history_entry = None # following filled in by get_models() self.has_records = False self.columns = None self.column_order = {} # map of column names to order in UI self.rows_response_factory = None # for parsing get_rows() self.get_models() def project_name(self): return Refine(self.server).get_project_name(project_id) def do_raw(self, command, data): """Issue a command to the server & return a response object.""" return self.server.urlopen(command, self.project_id, data) def do_json(self, command, data=None, include_engine=True): """Issue a command to the server, parse & return decoded JSON.""" if include_engine: if data is None: data = {} data['engine'] = self.engine.as_json() response = self.server.urlopen_json(command, project_id=self.project_id, data=data) if 'historyEntry' in response: # **response['historyEntry'] won't work as keys are unicode :-/ he = response['historyEntry'] self.history_entry = history.HistoryEntry(he['id'], he['time'], he['description']) return response def get_models(self): """Fill out column metadata. column structure is sent in a list of columns in their order. The cellIndex is used to find that column's data when returned from get_rows().""" response = self.do_json('get-models', include_engine=False) column_model = response['columnModel'] column_index = {} self.columns = [column['name'] for column in column_model['columns']] for i, column in enumerate(column_model['columns']): name = column['name'] self.column_order[name] = i column_index[name] = column['cellIndex'] self.key_column = column_model['keyColumnName'] self.has_records = response['recordModel'].get('hasRecords', False) self.rows_response_factory = RowsResponseFactory(column_index) # TODO: implement rest return response def wait_until_idle(self, polling_delay=0.5): while True: response = self.do('get-processes') if 'processes' in response and len(response['processes']) > 0: time.sleep(polling_delay) else: return def apply_operations(self, file_path, wait=True): json = open(file_path).read() response_json = self.do('apply-operations', {'operations': json}) if response_json['code'] == 'pending' and wait: self.wait_until_idle() return 'ok' return response_json['code'] # can be 'ok' or 'pending' def export(self, export_format='tsv'): """Return a fileobject of a project's data.""" url = ('export-rows/' + urllib.quote(self.project_name()) + '.' + export_format) return self.do_raw(url, {'format': export_format}) def export_rows(self, **kwargs): """Return an iterable of parsed rows of a project's data.""" return csv.reader(self.export(**kwargs), dialect='excel-tab') def delete(self): response_json = self.do_json('delete-project', include_engine=False) return 'code' in response_json and response_json['code'] == 'ok' def compute_facets(self, facets=None): """Compute facets as per the project's engine. The response object has two attributes, mode & facets. mode is one of 'row-based' or 'record-based'. facets is a magic list of facets in the same order as they were specified in the Engine. Magic allows the original Engine's facet as index into the response, e.g., name_facet = TextFacet('name') response = project.compute_facets(name_facet) response.facets[name_facet] # same as response.facets[0] """ if facets: self.engine.set_facets(facets) response = self.do_json('compute-facets') return self.engine.facets_response(response) def get_rows(self, facets=None, sort_by=None, start=0, limit=10): if facets: self.engine.set_facets(facets) if sort_by is not None: self.sorting = facet.Sorting(sort_by) response = self.do_json('get-rows', {'sorting': self.sorting.as_json(), 'start': start, 'limit': limit}) return self.rows_response_factory(response) def reorder_rows(self, sort_by=None): if sort_by is not None: self.sorting = facet.Sorting(sort_by) response = self.do_json('reorder-rows', {'sorting': self.sorting.as_json()}) # clear sorting self.sorting = facet.Sorting() return response def remove_rows(self, facets=None): if facets: self.engine.set_facets(facets) return self.do_json('remove-rows') def text_transform(self, column, expression, on_error='set-to-blank', repeat=False, repeat_count=10): response = self.do_json('text-transform', { 'columnName': column, 'expression': expression, 'onError': on_error, 'repeat': repeat, 'repeatCount': repeat_count}) return response def edit(self, column, edit_from, edit_to): edits = [{'from': [edit_from], 'to': edit_to}] return self.mass_edit(column, edits) def mass_edit(self, column, edits, expression='value'): """edits is [{'from': ['foo'], 'to': 'bar'}, {...}]""" edits = json.dumps(edits) response = self.do_json('mass-edit', { 'columnName': column, 'expression': expression, 'edits': edits}) return response clusterer_defaults = { 'binning': { 'type': 'binning', 'function': 'fingerprint', 'params': {}, }, 'knn': { 'type': 'knn', 'function': 'levenshtein', 'params': { 'radius': 1, 'blocking-ngram-size': 6, }, }, } def compute_clusters(self, column, clusterer_type='binning', function=None, params=None): """Returns a list of clusters of {'value': ..., 'count': ...}.""" clusterer = self.clusterer_defaults[clusterer_type] if params is not None: clusterer['params'] = params if function is not None: clusterer['function'] = function clusterer['column'] = column response = self.do_json('compute-clusters', { 'clusterer': json.dumps(clusterer)}) return [[{'value': x['v'], 'count': x['c']} for x in cluster] for cluster in response] def annotate_one_row(self, row, annotation, state=True): if annotation not in ('starred', 'flagged'): raise ValueError('annotation must be one of starred or flagged') state = 'true' if state == True else 'false' return self.do_json('annotate-one-row', {'row': row.index, annotation: state}) def flag_row(self, row, flagged=True): return self.annotate_one_row(row, 'flagged', flagged) def star_row(self, row, starred=True): return self.annotate_one_row(row, 'starred', starred) def add_column(self, column, new_column, expression='value', column_insert_index=None, on_error='set-to-blank'): if column_insert_index is None: column_insert_index = self.column_order[column] + 1 response = self.do_json('add-column', {'baseColumnName': column, 'newColumnName': new_column, 'expression': expression, 'columnInsertIndex': column_insert_index, 'onError': on_error}) self.get_models() return response def split_column(self, column, separator=',', mode='separator', regex=False, guess_cell_type=True, remove_original_column=True): response = self.do_json('split-column', {'columnName': column, 'separator': separator, 'mode': mode, 'regex': regex, 'guessCellType': guess_cell_type, 'removeOriginalColumn': remove_original_column}) self.get_models() return response def rename_column(self, column, new_column): response = self.do_json('rename-column', {'oldColumnName': column, 'newColumnName': new_column}) self.get_models() return response def reorder_columns(self, new_column_order): """Takes an array of column names in the new order.""" response = self.do_json('reorder-columns', { 'columnNames': new_column_order}) self.get_models() return response def move_column(self, column, index): """Move column to a new position.""" if index == 'end': index = len(self.columns) - 1 response = self.do_json('move-column', {'columnName': column, 'index': index}) self.get_models() return response def blank_down(self, column): response = self.do_json('blank-down', {'columnName': column}) self.get_models() return response def fill_down(self, column): response = self.do_json('fill-down', {'columnName': column}) self.get_models() return response def transpose_columns_into_rows(self, start_column, column_count, combined_column_name, separator=':', prepend_column_name=True, ignore_blank_cells=True): response = self.do_json('transpose-columns-into-rows', { 'startColumnName': start_column, 'columnCount': column_count, 'combinedColumnName': combined_column_name, 'prependColumnName': prepend_column_name, 'separator': separator, 'ignoreBlankCells': ignore_blank_cells}) self.get_models() return response def transpose_rows_into_columns(self, column, row_count): response = self.do_json('transpose-rows-into-columns', { 'columnName': column, 'rowCount': row_count}) self.get_models() return response